Q.P.	Code:	16EE214
------	-------	---------

Reg. No:					i i i	at sprit	e asei		el trois
----------	--	--	--	--	-------	----------	--------	--	----------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations February-2022 ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 hours

4

8

9

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 The surfaces $\rho=3$, $\rho=5$, $\Phi=100_{\circ}$, $\Phi=130_{\circ}$, z=3, and z=4.5 define a closed surface. (a) Find enclosed volume; (b) Find the total area of enclosing surface; (c) Find the total length of the twelve edges of the surfaces; (d) Find the length of longest straight line that lies entirely within the volume.

OR

2 A circle, centred at the origin with radius of 2 units, lies in the xy plane. Determine the unit vector in rectangular components that lies in the xy plane, is tangent to the circle at $(\sqrt{3}, 1, 0)$, and is in the general direction of increasing values of y. 12M

UNIT-II

3 A charge Q₀ located at the origin in free space, produces a field for which E₂=1kV/m at point P (-2, 1,-1). (a) Find Q₀. Find E at M (1, 6, 5) in (b) Cartesian coordinates. (c) Cylindrical 12M coordinates.

OR

a	Derive the expression for electric field intensity at a point due to electric dipole	6M
b	i) Define dipole moment.	
	ii) Define an electric dipole.	6M
	iii) State vector form of coulomb's law.	

UNIT-III

5	a	Explain the boundary conditions between conductor and free space	6M
	b	A parallel plate capacitor has a plate area of 1.5 m ² and a plate separation of 5 mm. Three	
		are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with	
		a relative permittivity of 6 and the second has a thickness of 2 mm with a relative	6IVI
		permittivity of 4. Find the capacitor.	

OR

6 At the boundary between glass $\varepsilon_r = 4$ and air, the lines of electric field make an angle of 40° with normal to the boundary. If electric flux density in the air is 0.25μ C/m³. Determine the 12M orientation and magnitude of electric flux density in the glass.

UNIT-IV

7 a Find the magnetic field intensity (\$\overline{H}\$) due to co-axial cable.
6M
6M
6M
6M
6M

OR

a State and explain a npere's circuital law.
 b A circular loop is located on X²+Y²=9 and Z=0 carries a direct current of 10A along a_Q
 6M
 6M

UNIT-V

- a Derive the expression for self inductance of solenoid and toroid.
 b A toroid has air core and has a cross sectional area of 10mm² it has 1000 turns and its mean radius is 10mm. find its inductance
 6M
 - Page 1 of 2

Q.P. Code: 16EE214

OR

- **10 a** Derive the expression for Neuman's formula.
 - **b** Find the mutual inductance between a long, straight wire and square loop lying in same plane.

*** END ***

R16

analis Adage his '

Page 2 of 2

,